Inhaltsverzeichnis

Einführung in die Verfahren der Innenhochdruckumformung F. Dohmann, Padeborn	1
Theoretische Grundlagen der IHU C. Hartl, Siempelkamp Pressen Systeme GmbH & Co., Krefeld	23
Toleranzen beim IHU – Prozessauslegung und Werkzeugdesign FU. Leitloff, D. Pohler, V. A. Suca Gutierrez, Schuler Hydroforming GmbH & Co KG, Wilnsdorf	37
Werkzeuge für die IHU – Fertigungsgerechte Bauteilgestaltung A. Birkert, J. Neubert, Krupp-Drauz GmbH, Heilbronn	47
Auslegung von Trennflächen an IHU-Werkzeugen S. Padmanbahn, CATIA Beratung und Schulung, Herrenberg	61
Erfahrungen mit der Inbetriebnahme von Werkzeugen für die Produktion von Vorserienteilen mittels IHU M. Erras, BMW AG München	77
Hohlprofile aus Karosseriestählen für IHU-Anwendungen im Werkzeugbau K. Blümel, U. Kneiphoff, J. Gerlach, G. Eyl, Thyssen Krupp Stahl, Duisburg	85
Richtlinien für den Einsatz von Grenzformänderungsdiagrammen beim Hydroumformen von Stahl B. Levy, ISPAT Inland Inc., Chicago, USA	105
Rohre für das IHU-Verfahren E. Bollinger, DW. Jütten, Usinor Tubes, Montanaire Frankreich	127
Umformbarkeit und Konstruktionskriterien bei der Innenhochdruckumformung T. Altan, M. Koç, I. Aue-u-lan, K. Tibari, Ohio State University, Columbus, USA	135
Neues Pressenkonzept für die IHU M. Häussermann, R. Rieger, A. Schwager, K. Siegert Institut für Umformtechnik, Stuttgart	153
IHU spezifische Anforderungen an Hydroformingpressen A. Nottrott, Siempelkamp Pressen Systeme GmbH & Co., Krefeld	181
Mechanisch verriegelte IHU- Anlagen für die Großserienfertigung P. Bieling, Anton Bauer GmbH, Dillingen	193
Hydrauliksystemen für die Innenhochdruckumformung B. Engel, Schuler Hydroforming GmbH & Co. KG, Wilnsdorf	205
Durchgängige Simulation der Prozesskette Innenhochdruck-Umformen R. Neugebauer ^a , M. Putz ^a , J. Leichkauf ^a , B. Schulze ^b ^a Institut für Werkzeugmaschinen und Umformtechnik, Chemnitz ^b Dr. Meleghy Hydroforming GmbH & Co. KG, Zwickau	233

Ausgeführte FEM-Prozesssimulationen der IHU H. Bauer, A. Haas, J. Lerch, W. Rimkus, Fachhochschule Aalen	253
Hydroblechumformung K. Siegert, B. Lösch, Institut für Umformtechnik, Stuttgart	263
Möglichkeiten der wirkmedienbasierten Blechumformung M. Kleiner, V. Hellinger, W. Homberg, Ch Klimmek, Lehrstuhl für Umformtechnik, Dortmund	291
Hydro-Umformen von Aluminiumblech P. Dick Audi AG, Neckarsulm	305
Hydrostatisches Aufweiten von Verschweißten Doppelplatinen A. Birkert ^a , J. Neubert ^a , T. Gruszka ^b ^a Krupp-Drauz GmbH, Heilbronn ^b Thyssen Krupp Stahl AG Dortmund	327
Herstellung von Bauteilen mit hydromechanischer Blechumformung P. Jänchen, Schuler Neotec GmbH & Co. KG, Waghäusel	343
Herstellung von Tankschalen durch hydromechanisches Tiefziehen M. Aust, Institut für Umformtechnik Stuttgart	355
Neue Maschinenkonzepte für die Hydroblechumformung J. Beyer, Müller-Weingarten AG, Esslingen	371
Innenhochdruckumformen von unverschweißten Blechen R. Huber, C. Hielscher, D. Schmoeckel, Institut für Produktionstechnik und Umformmaschinen, Darmstadt	383
Herstellung von PKW-Rahmenstrukturbauteilen und Abgaskomponenten durch IHU M. Schroeder, Daimler Crysler AG, Hamburg	403
Hydroumformung von Strukturbauteilen für Automobile C. J. Bruggemann, General Motors Corporation, Detroit, USA	421
Innenhochdruckumformung: Die Schlüsseltechnologie R. Marando, Dana Corp. Reading, USA	441
Einsatz der IHU aus Sicht eines Automobilherstellers T. Kautz, J. Götz, A. Glocker, BMW AG München	447
Astra Vorderradträger – 1,5 Jahre Hydroforming Erfahrung J. Giering, Adam Opel AG, Bochum	455
Stand der Dichtungstechnik für IHU Werkzeuge M. Krei, Institut für Umformtechnik Stuttgart	461

Tribologie des Innenhochdruckumformens	483
D. Schmoeckel ^a , M. Prier ^b	
^a Institut für Produktionstechnik und Umformmaschinen, Darmstadt	
^b Schuler Hydroforming GmbH & Co. KG, Wilnsdorf	
Neuere Entwicklungen zum Innenhochdruckumformen von Rohren	497
A. Eichhorn, Institut für Fertigungstechnik und Qualitätssicherung, Magdeburg	
Außenhochdruckumformung (AHU) von Rohren	513
K. Siegert, P. Guel-Lopez, Institut für Umformtechnik, Stuttgart	
Möglichkeiten und Grenzen der FEM-Simulation von Innenhochdruck-	531
Umformprozessen	
P. Hora, M. Skirkerud, T. Longchang	
Institut für Umformtechnik, Zürich, Schweiz	
Möglichkeiten der Hydrostatischen Streckumformung von Blechen	551
KH. Schweitzer, hde-metallwerk, Menden	